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Abstract

Recent successes in machine learning research, buoyed by advances in computational

power, have revitalized interest in neural networks and demonstrated their potential

in solving complex controls problems. In this research, the reinforcement learning

framework is combined with traditional direct shooting methods to generate opti-

mal proximal spacecraft maneuvers. Open-loop and closed-loop feedback controllers,

parameterized by multi-layer feed-forward artificial neural networks, are developed

with evolutionary and gradient-based optimization algorithms. Utilizing Clohessy-

Wiltshire relative motion dynamics, terminally constrained fixed-time, fuel-optimal

trajectories are solved for intercept, rendezvous, and natural motion circumnaviga-

tion transfer maneuvers using three different thrust models: impulsive, finite, and

continuous. In addition to optimality, the neurocontroller performance robustness to

parametric uncertainty and bounded initial conditions is assessed. By bridging the

gap between existing optimal and nonlinear control techniques, this research demon-

strates that neurocontrollers offer a flexible and robust alternative approach to the

solution of complex controls problems in the space domain and present a promising

path forward to more capable, autonomous spacecraft.
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The more you learn the less you know.
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ẋ time derivative

r position vector
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OPTIMAL AND ROBUST NEURAL NETWORK CONTROLLERS FOR

PROXIMAL SPACECRAFT MANEUVERS

I. Introduction

1.1 Motivation

The increasingly congested, contested, and competitive operational space envi-

ronment is accelerating the need to examine responsiveness and survivability in this

evolving domain, particularly in the realm of spacecraft rendezvous and proximity

operations (RPO). Examples of RPO missions include the now common docking ma-

neuvers performed by multiple space vehicles with the International Space Station

over the last decade, and the Air Force’s operational Geosynchronous (GEO) Space

Situational Awareness Program for GEO-belt inspection.[1] Additionally, Air Force

Research Laboratory RPO experiments with ANGELS and recently EAGLE and

Mycroft further demonstrate that operating satellites effectively in close proximity

is quickly becoming a vital guidance, navigation, and control task.[2, 3] The rising

trend towards autonomy in other industries like robotics, transportation, comput-

ing, and manufacturing suggests a parallel pattern will emerge, if not already, in the

space domain.[4] This growing demand for greater autonomy in space is amplified by

challenges posed by the inherent nature of current satellite operations: intermittent

control at a great distance. As well, a significant limiting factor for nearly all space

vehicles is a finite supply of onboard fuel, and combined with a contested environ-

ment, controllers that are both optimal and robust form a requisite component for

autonomous spacecraft operations. Concurrent with this autonomy trend, the field
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of machine learning (ML) has recently made significant progress in the solution of

complex decision problems. Therefore, this research proposes that an opportunity

exists to leverage the techniques advanced within ML towards the development of

optimal and robust controllers essential to autonomous spacecraft RPO.

1.2 Research Overview

The hypothesis of this research is that neural networks offer a flexible param-

eterization that, through direct shooting and reinforcement learning methods, can

be leveraged to develop optimal and robust controllers for terminally constrained,

fixed-time minimum control proximal spacecraft maneuvers using evolutionary and

gradient-based optimization techniques. The resulting neural networks are referred

to as neurocontrollers.

1.2.1 Questions.

To address the hypothesis, the following research questions are posed:

1. How can neural networks be used to parameterize an open- and closed-loop con-

trol for impulsive, finite, and continuous thrust models and solved for common

proximal spacecraft maneuvers?

2. How can neural networks be used to produce a single open-loop controller ca-

pable of generating optimal control guidance for a predefined bounded set of

initial states?

3. How can neural networks be used to produce a single closed-loop controller capa-

ble of generating optimal control guidance for a predefined bounded parametric

uncertainty in the state dynamics?

2



1.2.2 Tasks.

The following tasks must be performed in this research to answer the correspond-

ing research questions:

1. Use a direct shooting method to optimize a control parameterized by a neural

network for combinations of open- and closed-loop controllers, thrust models,

and common proximal spacecraft maneuvers.

2. Combine reinforcement learning techniques with direct shooting methods to

optimize an open-loop control parameterized by a neural network valid for a

range of initial states using a heuristic optimization algorithm.

3. Combine reinforcement learning techniques with direct shooting methods to

optimize a closed-loop control parameterized by a neural network robust to

bounded parametric uncertainty in the state dynamics using a heuristic opti-

mization algorithm.

4. Validate neurocontroller performance for the problems investigated by compar-

ing to existing results in literature or develop optimal benchmark solutions.

1.2.3 Scope.

This work is based solely on simulation with no experimental investigation. The

dynamics models used are entirely deterministic. The only stochastic elements are

the random components inherent to heuristic optimization, initial guess seeding, and

batch sampling. Numerical optimization methods are employed that do not guarantee

global extrema, but in the case of gradient-descent methods, may ensure local minima.

Outer-loop controllers are solved off-line and assume an inner-loop controller exists

onboard the spacecraft that is capable of executing the generated control profile.

Lastly, the controls are solved exclusively for fixed-time maneuvers.

3



1.3 Assumptions and Limitations

The spacecraft maneuver problems investigated in this research assume relative

motion in near-circular orbits. The relative orbits and maneuvers examined are valid

only for distances in close proximity (i.e., on the order of 100 km at geosynchronous

orbit) to the specified reference origin and scales with the altitude of the origin. Im-

pulsive, finite, and continuous thrust models are implemented, with thrust taking the

form of simple directed acceleration vectors and mass loss neglected; this represents

a reasonable approximation for the duration (e.g. less than half an orbit) and size

of maneuvers investigated. Additionally, no maximum slew rate is imposed allowing

the spacecraft to change acceleration direction instantaneously. The instantaneous

magnitude of control is typically unbounded with the exception of some finite control

examples. Throughout this work full state information is assumed to be available

with no uncertainty.

Overview.

The remainder of this document is divided into four chapters. Chapter 2 provides

a background of topics pertinent to this research and reviews relevant literature.

Chapter 3 details the methodology employed within this work. Chapter 4 implements

the methodology and presents an analysis of the results. Finally, Chapter 5 concludes

the thesis with a discussion of key insights and future work.

4



II. Background

2.1 Overview

This research broadly concerns three primary subject areas: (a) relative satellite

motion, (b) controls and optimization, and (c) machine learning. This chapter devotes

a background section to each topic with discussion limited to relevant sub-topics with

pertinent literature highlighted. In particular, as machine learning encompasses a

vast field of study, emphasis is placed on the reinforcement learning sub-field and

the concept of neural networks especially. The three main problems explored in this

research are then summarized in the concluding section.

2.2 Relative Satellite Motion

When studying the motion of multiple satellites in close proximity, or merely a

single satellite in its local region, it is convenient to work in a relative frame. In this

context, the definition of proximity depends on the employed dynamics model as well

as the altitude and time period of interest. Figure 1 depicts the relative frame used

throughout this work, where x, y, and z represent the relative Hill frame components

in terms of the ijk Earth-centered inertial (ECI) frame. The origin of this relative

frame is commonly referred to as the chief (or target) and any other satellites as

deputies (or interceptors). In this frame, x is co-linear with the position vector, y

is in the direction of the velocity vector aligned with the local horizontal, and z is

normal to the orbit plane. The xyz notation is consistent with the RSW coordinate

system as defined in [5]. For this work, x, y, and z are equivalent to the radial,

in-track, and cross-track components respectively.

5
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Figure 1. Relative Hill Frame

2.2.1 Dynamics Models.

Several dynamics models have been developed over the past half-century.[6, 7] The

Hill-Clohessy-Wiltshire (HCW) model is a linear approximation for the relative mo-

tion of spacecraft in close-proximity on near-circular orbits.[8] This is the model used

throughout this research and is discussed in more detail in § 2.2.2. For near-circular

orbits, a second-order solution was developed, often referred to as Quadratic-Volterra,

that increases the valid separation distance.[9, 10] Butcher developed higher-order

solutions for circular and slightly-eccentric orbits by incorporating the effects of ec-

centricity as perturbation resulting in a system explicit in time.[11] Tschauner and

Hempel developed a linear time-varying solution by normalizing the coordinates and

changing the independent variable from time to true anomaly that improved the ac-

curacy for slightly eccentric orbits compared to HCW, but suffered from singularities

at zero eccentricity.[12, 13] Overcoming these limitations, Yamanaka and Ankersen

developed a nonsingular, linear solution for arbitrarily eccentric orbits.[14] Further,

Willis, Lovell and D’Amico introduced a second-order translational-state solution for

arbitrarily eccentric orbits.[6] Additional models exist that account for perturbations,
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such as Schweighart and Sedwick for the J2 effect, and the Gim-Alfriend state tran-

sition matrix that accounts for J2 and eccentricity.[15, 16]

2.2.2 Hill-Clohessy-Wiltshire Equations.

For this research, the linearized Hill-Clohessy-Wiltshire equations of relative satel-

lite motion are used exclusively as they offer a convenient and computationally effi-

cient set of dynamics while providing a sufficient level of accuracy for the domain of

study. The methodology developed however is such that higher-order dynamics may

be substituted with relative ease, albeit likely at the cost of computation time.

Unforced and Forced Motion.

The HCW differential equations are given in Eq. (2.1).[5, 8] These unforced equa-

tions of motion assume no perturbations and the origin, or chief, is in a circular

orbit.

ẍ = 3n2x+ 2nẏ

ÿ = −2nẋ

z̈ = −n2z

(2.1)

where x, y, and z represent the radial, in-track, and cross-track components respec-

tively, and n the mean motion,

n =

√
µ

a3
(2.2)

such that µ is the standard gravitational parameter (≈ 3.986 · 105 km3/s2 for Earth)

and a is the semi-major axis of the specified origin. Conveniently in this formulation

the z-component is decoupled from the x and y dynamics. Nonzero values of z

are considered out-of-plane motion. Throughout this research, all three dimensions

are employed, although some scenarios are chosen to be planar. These unforced

equations of motion imply there are no external forces on the interceptor and any
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Figure 2. Overview of Relative Satellite Motion Models [6]

∆V ′s are impulsive such that the resulting velocity becomes the initial condition for

the next state propagation.[5] These equations may be adapted for forced motion by

appending simple accelerations to the dynamics as shown in Eq. (2.3), and may be

solved through numerical integration, convolution, or analytically. For this research,

the controls solved for are directly these accelerations, with mass loss neglected, and

numerically integrated.

ẍ = 3n2x+ 2nẏ + ax

ÿ = −2nẋ+ ay

z̈ = −n2z + az

(2.3)

For unforced motion, a closed-form solution to Eq. (2.1) exists, given in Eq. (2.4).

x(t) = Φ(t)x(t0), x = [x y z ẋ ẏ ż]T

8



where

Φ(t) =



4− 3 cosnt 0 0 1
n sinnt 2

n(1− cosnt) 0

6(sinnt− nt) 1 0 2
n(cosnt− 1) 1

n(4 sinnt− 3nt) 0

0 0 cosnt 0 0 1
n sinnt

3n sinnt 0 0 cosnt 2 sinnt 0

6n(cosnt− 1) 0 0 −2 sinnt 4 cosnt− 3 0

0 0 −n sinnt 0 0 cosnt


(2.4)

This state transition matrix can be used to efficiently propagate the equations of

unforced motion.

Assumptions.

These equations assume the motion of the deputy spacecraft remains in close

proximity to the chief. This error scales with the size of the chief’s semi-major axis,

such that a separation distance of 100 km at geosynchronous orbit is a more reasonable

operating range than at low-Earth orbit. For this research, the mean motion is taken

to be at geosynchronous orbit, albeit the distance units used are dimensionless, this

proximity requirement should be kept in mind when translating to actual distance

units. Additionally, the approximation error grows with time and consequently the

duration of all trajectories examined in this research are less than one orbit. Finally,

these equations assume the chief is in a circular orbit, or in practice a near-circular

orbit, and no perturbations exist, although variations of these equations have been

developed to accommodate elliptical and perturbed orbits as discussed in § 2.2.1. For

the proof of concept studies examined in this research, these assumptions represent a

reasonable approximation without overly-restricting the general conclusions that may

be drawn from the results obtained or methods developed.
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2.2.3 Relative Orbital Elements.

It is convenient when working with spacecraft proximity operations to employ a

coordinate transformation that allows a more intuitive specification of relative orbital

geometry, as developed in [17]. The relative orbital elements (ROE) are depicted

in Figure 3, where ae is the semi-major axis of a 2-by-1 ellipse, xd and yd are the

origin offset, β is the in-plane phasing angle. Not pictured is zmax, the maximum

cross-track component, and ψ, the orientation about the z-axis. Note that Figure 3

depicts the instantaneous geometry of the deputy and that a drift component may

exist. This transformation can be readily computed from the cartesian representation

apogee

perigee

deputy

ae

ae
(yd,xd)

y

x

β

chief

Earth

velocity

Figure 3. Relative Orbital Elements [17]

in the HCW frame to the ROE’s,

ae = 2

√( ẋ
n

)2
+
(

3x+ 2
ẏ

n

)2
β = atan2(ẋ, 3nx+ 2ẏ)

xd = 4x+ 2
ẏ

n
zmax =

√( ż
n

)2
+ z2

yd = y − 2
ẋ

n
ψ = atan2(nz, ż)

(2.5)
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and the reverse,

x = −ae
2

cos β + xd ẋ =
ae
2
n sin β

y = ae sin β + yd ẏ = aen cos β − 3
2
nxd

z = zmax sinψ ż = zmaxn cosψ

(2.6)

A special case exists when xd = 0 resulting in a so-called natural motion circumnav-

igation (NMC) whereby the unforced motion of the deputy spacecraft traces out a

closed 2-by-1 ellipse relative to the chief. The utility of this orbit is discussed further

in § 2.2.4. Additionally, the ROE’s may be propagated directly as functions of time,

and are equivalent to propagating the unforced HCW equations.

ae = ae0 β = β0 + nt

xd = xd0 zmax = zmax0

yd = yd0 −
3

2
nxdt ψ = ψ0 + nt

(2.7)

For convenience, all dynamics in this research are propagated using the HCW equa-

tions, and appropriate transformations made only at the initial and final states.

2.2.4 Rendezvous and Proximity Operations.

The term Rendezvous and Proximity Operations (RPO), as the name suggests,

refers to spacecraft operations conducted in close proximity (see § 2.2.2) to itself or

another satellite(s). With regards to RPO, a few common trajectories and relative

orbits are introduced and implemented in this research, summarized in Table 3, where

r is the relative position vector. The leader-follower and teardrop orbits are not im-

plemented in this research, but are included here for completeness as the methodology

presented may be readily applied to these orbits as well.
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Intercept & Rendezvous.

In this context, intercept is taken to mean a spacecraft must match position only

for a designated target. This implies that velocity is not constrained. Rendezvous

however is taken to mean a spacecraft must match the position and velocity for a

designated target. Docking with another satellite is an example of rendezvous and

was the original motivation for the development of the HCW equations.[8]

Natural Motion Circumnavigation.

When xd = 0, the spacecraft traces out a closed 2-by-1 ellipse in the relative

frame. This allows the deputy to circumnavigate the chief spacecraft indefinitely

without using fuel. The NMC has a period equal to the period of the chief’s orbit,

with the size of the ellipse determined by ae. This type of relative orbit may be useful

for inspection missions and staging prior to docking.

Leader-Follower.

A leader-follower relative orbit is such that only an in-track component exists, i.e.

both satellites are in the same orbit with a phase difference. Equivalently, this can

be thought of as a special case of the NMC requirements where ae = 0. A leader or

follower orbit is specified by setting yd > 0 or yd < 0 respectively.

Teardrop.

The teardrop, or pogo, trajectory is a useful relative orbit whereby a quasi-

hovering motion results in the deputy spacecraft and requires ae >
3
2
|xd|. Once again,

this is useful for inspection missions where it is desired to stay within a specified angle

of the chief for a period of time. A number of parameters are developed in [18] to

specify the geometry of the teardrop, including the location, width, closest approach,
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and teardrop period. The teardrop may be repeated indefinitely with minimal fuel

by executing a burn at the cusp.

Table 3. Summary of Common Relative Maneuvers & Orbits

Intercept r(tf ) = rdes
Rendezvous r(tf ) = rdes, ṙ(tf ) = ṙdes

NMC xd = 0, ae 6= 0
Leader-Follower xd = ae = 0

Teardrop ae >
3
2
|xd|

2.3 Control and Optimization

This section introduces some foundational control concepts and the topic of opti-

mal control along with classic solution approaches.

2.3.1 Control Loops and Thrust Models.

A controller may be implemented in either an open- or closed-loop configuration.[19]

For this research, an open-loop (OL) controller (Fig. 4a) is one that does not depend

on future states and consequently the control history for the entirety of the trajectory

may be determined independent of propagation. An OL controller may depend on the

initial state, any other fixed parameter, or time. Open-loop is the primary control of

interest to the optimal control community. In contrast, closed-loop (CL) controllers

(Fig. 4b) incorporate a feedback element, and for this research are explicitly depen-

dent on some representation of the current state, and consequently the control can

not be determined prior to propagation. CL controllers are required to handle un-

certainties in the environment or system dynamics. Although in practice feedback

typically implies measurements and estimation, for this research certain full-state (or

subset thereof) feedback is assumed. For a given problem, the OL and CL trajecto-

ries are equivalent. Figure 10 and subsequent discussion provide further distinction
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between OL and CL in the context of neural network controllers. For this research,

three different thrust models are employed: impulsive, finite, and continuous. For

each, mass loss is neglected.

Controller
Control OutputTime

Initial State Plant

(a) Open-Loop

Controller
Control OutputErrorReference

Measurements

Plant

(b) Closed-Loop

Figure 4. Notional Open- and Closed-Loop Control Block Diagrams

Impulsive Thrust.

Impulsive thrust assumes an instantaneous change in velocity, and as the name

implies is often referred to as ∆V . Although not physically realizable, the impulsive

model is a reasonable approximation when the duration of the thrust(s) is small

relative to the overall trajectory, especially if the thrust direction remains relatively

constant throughout the burn. With regards to the dynamics, impulsive thrusts are

incorporated by using the resultant velocity vector, i.e. the current velocity plus

the ∆V , as the initial conditions for an unforced motion segment found by either

numerically integrating or using the state transition matrix. With this model, the

variables of interest are magnitude and direction.
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Continuous Thrust.

Continuous thrust models refer to the continuous application of controlled accel-

eration throughout a given trajectory. These trajectories are numerically integrated

using the forced HCW equations of motion. Continuous thrust provides a good model

for the electric propulsion systems that are seeing increased usage aboard spacecraft

and the mathematical derivation of optimal control laws traditionally assumes con-

tinuous control (see § 2.3.2). As with impulsive thrust, the variables of interest are

magnitude and direction.

Finite Thrust.

Finite thrust represents a more physically realizable control model that is some-

where between impulsive and continuous. In this context, finite thrust refers to a

trajectory composed of continuous control acceleration segments separated by un-

forced motion segments. During the controlled segments, the control may be defined

by constant or variable throttle, direction and duration, summarized in Table 4. In

each case the values may be fixed a priori or as variables to be optimized. The

controlled segments are once again numerically integrated using the forced HCW

equations of motion while the uncontrolled segments are propagated with either the

state transition matrix or numerical integration. Although in actual spacecraft the

thrust magnitude may only take discrete values, for this research continuous thrust

values are assumed. Therefore, depending on the combination used, the variables of

interest are magnitude (throttle), direction, and duration of burn.

2.3.2 Optimal Control.

Optimal control (OC) encompasses a diverse field of study at the intersection of

optimization and control theory with its foundations in the calculus of variations. [20,
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Table 4. Finite Thrust Control Combinations

Throttle Direction Duration
Constant Constant Variable
Constant Variable Variable/Constant
Variable Constant Variable/Constant
Variable Variable Variable/Constant

21] At its most basic, OC is concerned with finding an admissible control history that

minimizes a performance index subject to some dynamic constraints (e.g., differential

equations of motion, path constraints, and/or boundary conditions). In general, the

goal of OC is to determine x∗(t) and u∗(t) that minimizes the cost functional (i.e. a

mapping from a vector space to a scalar)

J = Φ
(
x(t), tf

)
+

∫ tf

t0

L
(
x(t),u(t), t

)
dt (2.8)

where Φ is the terminal cost and L is the running cost, subject to the dynamic

constraint

ẋ = f(x,u, t) (2.9)

the boundary conditions

φ
(
x(t0), t0,x(tf ), tf

)
= 0 (2.10)

and path constraints

Cmin ≤ C
(
x(t),u(t)

)
≤ Cmax. (2.11)

Direct and Indirect Methods.

Two methods are widely used to solve OC problems: direct and indirect op-

timization methods.[22] Indirect methods explicitly solve the optimality conditions

while direct methods do not require this analytic expression and instead introduce a

parametric representation to form a nonlinear programming (NLP) problem. While
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indirect methods can guarantee local optimality if the necessary and sufficient con-

ditions are met, complex OC problems can often prove to be intractable. Direct

methods are the focus of this research. Several implementations of the direct method

exists, primarily differentiated by the parametric representation. In this context,

single- and multiple-shooting methods refer to control parameterization in a single

or multiple trajectory segments respectively. For example, the control law may be

assumed to be linear with respect to time, such that

u(t) = p2t+ p1 (2.12)

where pi are the parameters to be found, thereby permitting the controlled trajec-

tory to be integrated directly, either analytically or numerically. In addition to the

control, collocation methods parameterize the state as well, thereby approximating

the dynamics and forming an NLP. Several collocation methods exist with increasing

order of accuracy, from trapezoidal to Hermite-Simpson.[23] Pseudospectral methods

are an extension of collocation methods that employ Gaussian quadrature points to

approximate the function integral and Lagrange interpolating polynomials to approx-

imate the differential equations.[24] Once more, this research exclusively uses a direct

single-shooting method. Regardless of the method employed to transform the optimal

control problem, the result is typically an NLP, that may be solved through a variety

of gradient-based and/or heuristic methods.

Nonlinear and Robust Control.

A shortcoming of the OC methods presented here is that their solution is only

applicable to the single set of values for which the problem scenario is solved. For

example, if the initial position changes, the entire control problem needs to be solved

again. Nonlinear control techniques such as feedback linearization, sliding mode and
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adaptive control methods, on the other hand can be used to create a controller that is

robust to a variety of conditions.[25] These conditions can be anything from initial or

final states, uncertain parameters in the dynamics, etc. Depending on the employed

technique, the controller may be shown to be stable (in some sense, e.g. Lyapunov

stable) for only a bounded range of uncertainty. However, these methods do not

typically result in an optimal control as defined previously. Model-predictive control

is one method that attempts to address this trade-off by repeatedly solving on-line

an OC problem for a specified horizon. One of the shortcomings of this approach

is that performing the optimization requires capable onboard hardware. For this

research, a controller that produces a control that is optimal with respect to a specified

performance index throughout a specified bounded operating range, is considered to

be both optimal and robust.

2.3.3 Nonlinear Programming.

The direct shooting method employed in this research transforms the optimal

control problem into a nonlinear program. A nonlinear program is a general math-

ematical model whereby a cost function is minimized while satisfying all nonlinear

equality and inequality constraints.[26] Within this model, all equality constraints are

set to zero and inequality constraints transformed to be less than or equal to zero.

The standard NLP formulation is presented below:

minimize
x

f(x)

s.t. hj(x) = 0, ∀ j = 1 . . . p

gi(x) ≤ 0, ∀ i = 1 . . .m

(2.13)

Note that once the OC problem has been transcribed into an NLP, the cost func-

tion is no longer a cost functional. Mature and powerful software tools exist to solve
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NLP problems, albeit not as robust as for linear programs. Two different optimiza-

tion methods are used within this research to solve the NLP’s: gradient-descent and

heuristic. Several gradient-descent algorithms exist to solve constrained NLP’s such

as sequential quadratic programming that rely on the gradient of the cost function

and constraints as well as second-order information to find local minima. Heuristic

methods however do not generally rely on differentiation and instead use stochastic

techniques to search the design space. The heuristic method used within this research

is a genetic algorithm, that takes inspiration from genetic evolution, and evolves a

population of candidate solutions.

2.4 Machine Learning and Neural Networks

This section provides an overview of machine learning with a focus on reinforce-

ment learning as applied to traditional controls problems. Relevant research is dis-

cussed, particularly as it pertains to the field of spacecraft control.

2.4.1 Learning Types.

Machine learning (ML) is a family of statistical techniques used to approximate

data relationships without explicit instruction, most commonly implemented via ar-

tificial neural networks (ANN), with myriad applications in image recognition, data

analytics, forecasting, fault detection, and robotics.[27] Although the concept of ML

has existed for over half a century [28], the past two decades have seen a surge in

ML-related research [29] particularly with the advent of deep learning (deep simply

refers to the multiple hidden layers within a network, see § 2.4.2), due at least in part

to the rapid rise in computational power over that same period. Consequently, some

aspects of the field remain very much in their infancy. Combine this with the produc-

tion and application of custom built processors that excel at the kinds of large-scale
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matrix calculations inherent to neural networks, and this suggests the upward trend

is likely to continue in the near future.

Machine
Learning
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Learning

Supervised

Learning

Reinforcement
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Dimensionality
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Clustering Classification
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Figure 5. Branches of Machine Learning [30]

The umbrella of machine learning can be broadly divided into three major cate-

gories: supervised, unsupervised, and reinforcement learning.[27] Supervised learning

(SL) attempts to find a relationship, or mapping, between labeled input-output data

while unsupervised learning attempts to extract patterns in unlabeled data. The

implementation of the exclusive-or (XOR) function, shown in Table 5, is a simple

example of SL where the mapping between two binary inputs and a single binary

output must be learned.

Table 5. XOR Truth Table

Input 1 Input 2 Output

0 0 0

0 1 1

1 0 1

1 1 0
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In this case, because the true output is known, the optimization algorithm seeks to

minimize the difference, e.g. mean-square error (MSE), between the network’s output

ŷ and truth y by varying the parameters θ that define the network, as in Eq. (2.14).

min
θ

J =
4∑
i=1

‖y − ŷ‖22 (2.14)

Although this example is limited to only four possible input combinations, both su-

pervised and unsupervised methods typically require large datasets that, depending

on context, are prohibitively difficult to obtain or generate. In contrast, the third

category of ML, reinforcement learning (RL), does not require a large a priori la-

beled dataset, and instead attempts to discover an optimal policy directly through

the interaction of an agent in a specified environment according to some user-defined

reward function. In other words, the desired output may not be known precisely,

but some performance index or desirable properties are known. The mountain car

problem depicted in Figure 6 is a benchmark RL problem wherein a car starts from

a random position near the bottom of a valley with the goal to reach the top of the

hill. However, the car does not have the necessary power to go directly up the hill

Figure 6. Mountain Car Problem [31]

and therefore must learn to go back first and then leverage its momentum.[31, 32]

Variations of this problem exist with different performance indices such as minimizing
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control or time. From this example the similarity between RL and traditional opti-

mal control is readily observed. Figure 7 depicts a typical closed-loop controller block

diagram with the equivalent terminology identified. RL is the primary inspiration of

this research; aspects of RL are combined with traditional optimal control methods

to develop and implement the RL-like approach presented here.

Controller
(Agent)

Control Signal
(Action)

Measurements
(Observations)

Plant
(Environment)

Figure 7. RL and Classical Controls Terminology and Block Diagram

In [33–36] RL is used to solve large, discrete state-action space games, such as

backgammon, chess, go, and Atari. The latter two problems in particular demon-

strated the efficacy of deep RL to existing RL methods like Q-learning. When applied

to high-dimensional dynamic problems with continuous state-action spaces (states

and controls may take on any continuous value) however, these methods often become

intractable. To overcome this, actor-critic Q-learning variations were developed.[37]

A software framework for testing RL algorithms on a standardized library of contin-

uous and discrete environments like Atari, robotics, and classical control problems

was developed in [31]. [38] presents several implementations of a class of RL control

methods that bridge the gap between optimal and adaptive control called approx-

imate dynamic programming (ADP) using Q-learning and integral RL to solve the

Hamilton-Jacobi-Bellman (HJB) equation online. All of these methods use gradient-

based optimization to solve for the state-action value function and provide feedback

at each step. Recently however, [39] demonstrated evolutionary strategies (ES) as

a feasible alternative approach, using heuristic evolutionary optimization techniques
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like genetic algorithms, differential evolution, and co-variance matrix adaptation to

solve for the optimal network parameters without attempting to approximate the

value function. In other words, traditional RL rewards actions while ES rewards

policies. ES exhibits strengths in environments with sparse rewards and long time

horizons and is indifferent to continuous or discrete state-action spaces. While there

is some debate regarding the distinction between RL and ES, this research considers

ES a subset of RL, and regardless the optimization method used, i.e. gradient-based

or heuristic, the policy rewarding approach is exclusively used.

2.4.2 Neural Networks.

Neural networks are increasingly the standard mechanism by which ML is em-

ployed. Neural networks, sometimes called artificial neural networks to distinguish

them from their biological source of inspiration, are simply nonlinear matrix functions

that can be used to approximate an arbitrary input-output mapping.[27] ANN’s typ-

ically consist of an input layer, one or more hidden layers, and an output layer, see

Figure 8. Each layer comprises multiple neurons, or nodes, each with an associated

x1

x2

Inputs
Hidden
Layer

Output
Layer Outputs

b1W1 W2 b2

y1

y2

Figure 8. Notional Feed-Forward Neural Network

element-wise nonlinear operator, or activation function. Some common activation

functions are depicted in Figure 9. Although a variety of neural network architectures
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exist, from recurrent neural networks to convolutional neural networks (used espe-

cially in image recognition), this research exclusively uses multi-layer feed-forward

networks whereby all nodes of a layer are connected to all nodes of the next layer.

A useful property of these networks is their ability to approximate a wide class of

(a) Linear (b) Sigmoid (c) Tanh

(d) Rectified Linear Unit
(ReLU)

(e) Leaky ReLU (f) Exponential Linear Unit
(ELU)

Figure 9. Common Activation Functions [40]

functions, as shown in [41], thus earning the nickname universal approximators. The

number of nodes in each layer is often referred to as the width of the network and the

number of layers as the depth of the network, roughly corresponding to the representa-

tional capacity of the network and its accuracy respectively. The required width and

depth depend on the specific problem to be solved (for example, the XOR example

requires at least one hidden layer), but wider and deeper networks drastically increase

the number of parameters to be tuned thereby increasing computation time–there is

always a trade-off. In addition to the architecture, or topology of the network, the

primary parameters for such networks are the weights of each node connection and

24



the node biases, collectively forming the parameter vector, θ. While these parameters

are often optimized with stochastic gradient descent techniques through backpropa-

gation, other optimization methods may be used to include heuristic techniques. As

in Eq. (2.15), in general the goal is to find the mapping N(θ) from some input vector,

or scalar, x to the optimal output vector, or scalar, y that minimize some cost, or

loss, function. In this context x may or may not correspond to the state vector x in

Eq. (2.4).

N(θ) : x→ y (2.15)

2.4.3 Spacecraft Control with Neural Networks.

While the majority of RL research to date has largely focused on discrete games,

the recent advances being made in ML and with neural networks in general has in-

spired a gradual reassessment of their application to other domains, specifically the

classical controls field. Further, several examples exist wherein RL and SL approaches

have been taken to solve spacecraft controls problems. For low-thrust interplanetary

missions, [42] used an evolutionary RL approach to develop a closed-loop evolutionary

neurocontroller (NC) comprising a three-layer feed-forward network and was the ini-

tial inspiration for this work. Izzo solved similar interplanetary low-thrust problems

using SL techniques instead.[43–46] Specifically [43] uses evolutionary optimization

within SL approach for an Earth-Mars orbital transfer requiring the generation of

a large dataset using a traditional optimal control technique, in this case solving

over 300,000 two-point boundary value problems. This dataset is then used to train

the neural network thereby providing a control interpolating function. Horn et al.

used neural networks to generate optimal trajectories for unmanned aerial vehicles

as an alternative to collocation and pseudospectral methods.[47] In [48], evolutionary

methods are used to optimize neural networks in an RL manner to generate optimal
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steering control gains for low-thrust spiral trajectories. Much work has also been

accomplished using neural networks for on-board fault detection and the solution of

spacecraft attitude control problems, specifically Dracopoulos’s extensive work with

evolutionary neural network adaptive control.[49–51] Within the domain of relative

spacecraft control, Youmans and Lutze used SL and Clohessy-Wiltshire dynamics to

develop optimal open- and closed-loop neural network controllers for spacecraft.[52]

This research is most closely related to Youmans but uses an RL-like approach

and extends the application to a variety of RPO maneuvers and control models. This

approach bypasses the initial dataset generation task required of SL and solves the

problem of spacecraft proximity control directly, similar to RL but with explicitly

defined nonlinear terminal constraints incorporated into the optimization. Addition-

ally, while much of the traditional ML controls research to date focuses on closed-loop

feedback control, open-loop controllers are also developed within this work. Figure 10

depicts notional open- and closed-loop neural network controllers: open-loop depends

on the initial state and possibly the changing time value, while closed-loop incorpo-

rates some sort of feedback in this case the current state (see § 2.3.1 for further

discussion of open- and closed-loop control).

x(t0)

y(t0)

ux(t)

uy(t)

z(t0)

uz(t)

t

(a) Open-Loop

x(t)

y(t)

ux(t)

uy(t)

z(t) uz(t)

(b) Closed-Loop

Figure 10. Notional Open- and Closed-Loop Neural Network Controllers
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2.5 Problems Overview

This research is divided into three major problems: A, B, and C. Problem A

is further subdivided into three sub-problems: A1, A2, and A3. Problems B and

C build on the concepts developed in Problem A. Together, the five problems are

primarily distinguished by the employed control configuration (i.e. open- or closed-

loop), control type (i.e. impulsive, finite, or continuous), and scenario to be solved

(i.e. intercept, rendezvous, or NMC transfer). These differences illustrate the flexible

application of neural network controllers. Additionally, Problems B and C differ from

Problem A by demonstrating a certain level of robustness.

Problem A: Optimal Neural Network Controllers.

The three sub-problems within Problem A use a different combination of control

configuration and type to solve each an intercept, rendezvous, and NMC transfer

scenario. The resulting controllers are only optimal and valid for the precise problem

parameters specified and are thus not considered robust in this context.

Problem B: Bounded Initial Conditions.

Problem B implements an optimal impulsive open-loop controller in an intercept

scenario, building on concepts developed in Problems A1 and A2. This problem

introduces the idea of bounded initial conditions, resulting in a controller robust to

starting states within a specified operating range.

Problem C: Bounded Uncertainty.

Problem C implements an optimal impulsive closed-loop controller in an inter-

cept scenario. Similar to Problem B, the resulting controller is robust to a specified

operating range: bounded parametric uncertainty in the dynamics for this problem.
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Problems A, B, and C are summarized in Table 6.

Table 6. Summary of Problems

Problem Configuration Control Type Scenario Robust

A1 Closed-Loop Continuous Intercept

A2 Open-Loop Finite Rendezvous

A3 Open-Loop Impulsive NMC Transfer

B Open-Loop Impulsive Intercept X

C Closed-Loop Impulsive Intercept X

The methodology developed and employed in this research to solve the above

problems is presented in the following chapter.
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III. Methodology

This chapter presents the five problem formulations and the developed methodol-

ogy for their solutions. The attributes common to each problem are first presented,

followed by a discussion of the unique aspects of each, primarily distinguished by the

assumed control model, imposed constraints, and solution approach.

3.1 Problem Formulation and Solution

3.1.1 Dynamics.

For all problems, the HCW dynamics, discussed in § 2.2.2, are used with the mean

motion chosen to be at geosynchronous orbit (except Problem A3) and dimensionless

distance units (DU). The closed-form solution to the HCW equations is used to prop-

agate the state vector when possible (e.g., impulsive thrust and unforced motion),

thereby reducing computation time and ensuring accuracy. All other forced motion is

numerically integrated using MATLAB’s ode45 with absolute and relative tolerances

adjusted to achieve the required level of performance as indicated in each problem

section. The resulting solution from the optimizer is then validated by propagating

with ode45 where applicable with finer tolerances and time steps for improved pre-

cision. The nonlinear nature of neural networks makes this validation run a vital

check on the performance of the neurocontroller. Smooth (i.e., appears qualitatively

continuously differentiable, C1) and optimal performance can be verified even for

network inputs, i.e. time points, that may not have been evaluated during the opti-

mization due to the coarser time vector used. Note that throughout this thesis the

control is always calculated directly from the neurocontroller, even when called within

ode45 ; i.e., the neural network is a continuous function approximation of the optimal
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control law. Therefore, no additional interpolation is required—in other words, the

neurocontroller acts as its own interpolator.

3.1.2 Decision Variables.

The method used here is at its foundation a parameterization of the control. As

the function being used to parameterize the control is a fully-connected feed-forward

artificial neural network, the parameters, or design variables (DV, also called decision

variables), are simply the weights and biases of the network. For certain problems

additional values of interest (e.g., burn duration) are parameterized as well. For sake

of formulation simplicity, the nonlinear vector function property of neural networks

is leveraged to parameterize all values of interest using a single network. In practice,

any number of networks may be implemented for any number of desired mappings—

neural networks are, if nothing else, a flexible tool. This may be especially desirable

when the complexity of the individual mappings is such that it is more efficient to

optimize multiple networks than to find the single network required to capture that

complexity. For Problems A, B, and C, however, a single network is found to be

sufficient.

Within this framework, the decision variables always consist solely of the weights

and biases regardless of the network inputs and outputs; only the number of DV’s

change dependent on the size of the network. This abstraction conveniently allows

the user to modify the underlying problem to be solved independent of the network,

DV bounds, initial guesses, etc. With regards to the DV’s, although each layers’

associated weights and biases are most easily represented in matrix and vector form

respectively, optimizers frequently require a single-column DV vectors. This remains

true for the optimizers used in this research. Careful attention must be taken then to

update the weights and biases at each optimization iteration/generation by expanding
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and reshaping this collapsed DV vector into the appropriately sized and matched

matrices and vectors necessary to efficiently evaluate the neural network. As discussed

in § 2.4.2, additional parameters called hyperparameters exist to specify a neural

network, e.g. activation functions and topology. Although the hyperparameters may

be treated as additional DV’s, for this research the hyperparameters are selected

based on common practice in literature [27], and through judicious trial and error.

The primary hyperparameters tuned for this work are the number of hidden nodes,

input/output representations and scaling, and to some extent the number of hidden

layers and activation functions. This was found to be a reasonable approach given

the relatively short solution time required for the problems solved, facilitating fairly

quick trial and error.

With regards to parameter initialization, unfortunately there is no a priori insight

into the appropriate values to select for the weights and biases. Common practice

suggests initializing the weights from a random normal distribution and setting the

biases to zero, and was the method taken in this research.[53] As well, typically a

regularization term is appended to the reward function to prevent these parameters

from blowing up during optimization, or in certain cases over-fitting. To avoid the

careful tuning required of this term and to keep the cost function as simple as possible,

the parameters are heuristically bounded to ±3 within the optimizer. Unfortunately

doing so requires scaling the network input and output values appropriately, else

network nodes may saturate. To mitigate this potential saturation, inputs values are

normalized to the largest expected input value and output values are scaled by their

expected order of magnitude. In practice the problem solution was not found to be

prohibitively sensitive to the chosen scaling factors as long as the input/output values

are of the order one. Selecting the scaling factors may be readily accomplished by
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checking if a significant number of parameters are on the bounds should the optimizer

not converge.

3.1.3 Objective Functions.

In this research, the objective is to minimize control in a terminally constrained

fixed-time scenario, wherein the general optimal control problem to be solved is

minimize
W, b

J =

∫ tf

t0

u(t)Tu(t) dt

s.t. ẋ(t) = f(x,u, t), ∀ t ∈ [t0, tf ]

x(t0) = x0

δt0, δtf = 0

x ∈ R6

u ∈ R3

(3.1)

the cost function is the total magnitude of the control used such that the state dynam-

ics are constrained to the specified equations of motions from a fixed initial state with

no variation in the initial or final time and no variation in the final state (or subset

thereof). Of course there is nothing inherent to the methodology presented here that

prevents its application to other optimal control problems, (e.g. minimum and free

final time, path constraints, etc.). The exact cost function formulation varies slightly

for Problems A through C and depends on the control type used. For impulsive,

J =
n∑
i=1

‖∆Vi‖22 (3.2)
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for n total burns, where ‖·‖2 is the 2-norm, or Euclidean norm. For finite thrust,

J =
n∑
i=1

∫ tburn,i

0

ui(t)
Tui(t) dt (3.3)

where tburn,i is the duration of ith burn and n total burns. In some cases, e.g. fixed-

thrust, Eq. (3.3) is simplified to the equivalent sum of burn durations. For continuous

thrust,

J =

∫ tf

t0

u(t)Tu(t) dt (3.4)

where t0 and tf are the initial and final times of the specific scenario respectively, as

in Eq. (3.1). Numerical optimization results in a discrete control history, therefore

the cost function integrals must be approximated. For this work, the integral is

approximated via the trapezoidal method using MATLAB’s trapz as it offers a simple,

computationally efficient, and sufficiently accurate implementation. Each ∆V and

u(t) is a 3-by-1 control vector, consisting of components in the x, y, and z directions.

The cost functions implemented here differ from RL approaches where the cost

function is typically specified as a positive reward function to be maximized; this is

equivalent to minimizing the negative reward, i.e.

minimize
x

J(x) = maximize
x

− J(x) (3.5)

Additionally and more importantly, typical RL approaches do not impose explicit

constraints, but instead append any constraints to the reward function. This research

however, seeks to leverage the existing, powerful constrained optimization tools to

avoid the time-intensive task of tuning such appended constraints.
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3.1.4 Hardware and Software.

Problems A, B, and C are solved on a desktop computer with a 2.4 GHz Intel

Xeon E5-2640 CPU and 64 GB of RAM. Mathwork’s MATLAB is used throughout

this work. Problem A is solved using MATLAB’s gradient-based optimization func-

tion fmincon and Problems B and C are solved using a combination of fmincon and

MATLAB’s genetic algorithm implementation ga. Both optimizers support bounded

and nonlinear constraints. For fmincon, tolerances are adjusted to achieve desired

performance with all other settings set to default values. The maximum number

of generations and the population size within ga are adjusted by trial and error to

achieve requisite convergence while all other settings are left to default values.

Multiple mature and robust machine learning frameworks exist, particularly us-

ing the Python programming language, such as TensorFlow and PyTorch. In the

early stages of this research TensorFlow via the high-level Keras interface was used

to explore some initial controls problems, but at the time these libraries were more

conducive to supervised learning than to reinforcement learning and exhibited more

complexity than required for this research. Additionally, the research team’s ex-

perience was primarily in MATLAB, thereby aiding code development, as well as

leveraging MATLAB’s powerful optimization tools. Ultimately, MATLAB was used

exclusively for the results presented here.

Although MATLAB contains its own robust neural network library, initial ex-

perimentation showed significant computational inefficiencies for the given problem

formulation using MATALB’s built-in neural network object class. The author was

unable to determine the cause of this inefficiency. Ultimately a neural network class

was developed from scratch to handle the neural network functionality required for

this research to include variable number of nodes, layers, inputs, and outputs, as well

as activation functions, network evaluation, and parameter updates. An additional
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benefit of this effort was the hands-on insight gained into neural networks that would

not have been obtained with a black-box approach. Nonetheless, this author acknowl-

edges that the existing ML tools and libraries will undoubtedly be required as the

complexity and size of the problems shown here increase.

3.2 Problem A

Problem A represents a building block for Problems B and C, and of the three

problems, is the most similar to traditional optimal control methods, specifically

control parameterization with direct single-shooting. In terms of single-shooting [22],

a neural network serves as the basis function with the weights and biases comprising

the coefficients, or parameters, to be optimized over. The network hyperparameters

serve as additional basis function tuning knobs to achieve convergence and the desired

level of performance. As with a traditional optimal control problem, one limitation

is that the resulting control is only valid for the specific problem solved. The goal is

to find the optimal mapping, N(θ), in Eq. (3.6),

N(θ) : x→ u∗ (3.6)

from some input vector x to an optimal output vector u∗, where θ is the parameter

vector comprising the neural network weights (W ) and biases (b). If x represents the

initial state, x0, the mapping is only valid, that is optimal, for the initial state chosen.

To find the optimal control from a different initial state requires re-solving the entire

problem again. An alternative approach to overcome this limitation is presented in

Problems B and C.

Nonetheless, this method is taken as an initial feasibility study for the devel-

opment of optimal neurocontrollers in the proximal spacecraft maneuver domain.
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Multiple control models and configurations are explored and the relative complexity

of the problems ascertained. The three sub-problems within Problem A illustrate

the application of neural networks to a variety of control models, configurations, and

scenarios, and provides insight into the requisite networks to be used as an initial

point of reference in Problems B and C.

3.2.1 Problem A1: Intercept.

For this problem, a continuous control is implemented in a closed-loop configura-

tion and applied to an intercept scenario. The spacecraft must match its final position

with a designated target position, while its final velocity is allowed to be free, i.e.,

r(tf ) = rdes(tf )

δv(tf ) is free

(3.7)

Figure 11 illustrates the network employed for this problem, with the 6-by-1 current

state vector taken as input and a 3-by-1 acceleration vector as output. Algorithm 1

outlines the approach taken. Optimization is accomplished with fmincon and ode45

is used to integrate the forced motion dynamics.

Algorithm 1 Closed-Loop Control Optimization

1: def x(t0), xdes(tf ), t = [t0, tf ]
2: init guess θ
3: procedure optimize loop
4: update θ
5: X, U← propagate

(
x(t0), t,u(θ,x(t))

)
6: J ← cost(U)
7: c← constraints

(
x(tf ),xdes(tf )

)
return J, c, θ
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Figure 11. Problem A1 Network

3.2.2 Problem A2: Rendezvous.

For this problem, a finite thrust controller is implemented in an open-loop con-

figuration for a rendezvous scenario. The spacecraft must match final position and

velocity with the desired values, i.e.,

r(tf ) = rdes(tf )

v(tf ) = vdes(tf )

(3.8)

The controller is configured for a burn-coast-burn trajectory with each burn specified

as fractions of half the total trajectory time. Network inputs are a 6-by-1 initial

state vector with 8 total outputs: two 3-by-1 control direction vectors and two scalar

burn durations. The direction of the burns are constant over their duration with a

predefined fixed thrust magnitude. Unlike in Problem A1, the open-loop configuration

in Figure 12 allows the control to be evaluated prior to propagation, as indicated in

line 5 of Algorithm 2.

37



z0

z0

tb,2

y0

y0

x0

x0

ux,1

uy,1

uz,1

ux,2

uy,2

tb,1

uz,2

Figure 12. Problem A2 Network

Algorithm 2 Open-Loop Control Optimization

1: def x(t0), xdes(tf ), t = [t0, tf ]
2: init guess θ . weights & biases
3: procedure optimize loop
4: update θ
5: U = u

(
θ, t,x(t0)

)
. entire control trajectory

6: X← propagate(x(t0), t,U)
7: J ← cost(U)
8: c← constraints(x(tf ),xdes(tf ))

return J, c, θ

3.2.3 Problem A3: NMC Transfer.

For Problem A3, an impulsive thrust controller is implemented in an open-loop

configuration for an NMC transfer scenario. Whereas the previous two problems

passed the state vector to the network, here the network inputs are the 6 initial ROE’s.

Although equivalent results were achieved using the initial state vector, this represen-

tation further illustrates the flexibility of neurocontrollers. Problem B demonstrates
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a case whereby equivalent performance is not as easily obtained with both represen-

tations. For the network outputs, two 3-by-1 ∆V vectors for the initial and final

burns make up the 6 output nodes as depicted in Figure 13. In the case of an NMC

transfer, the terminal constraints are

ae(tf ) = ae,des(tf )

xd(tf ) = xd,des(tf )

yd(tf ) = yd,des(tf )

zmax(tf ) = zmax,des(tf )

ψ(tf ) = ψdes(tf )

(3.9)

thereby ensuring the desired relative orbital geometry is achieved. The final phase

angle along this orbit is allowed to be free. The method used for solving this problem

is similar to the method outlined in Problem A2.

yd

xd

zmax

ae

� 

� 

ΔVy,1 

ΔVx,1 

ΔVy,2 

ΔVz,2 

ΔVx,2 

ΔVz,1 

Figure 13. Problem A3 Network
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3.3 Problem B: Bounded Initial Conditions

Problems A1-A3 are similar to traditional optimal control methods in that they

produce solutions for a single scenario—change any of the initial conditions, position

for example, and the control is no longer optimal or valid. A generalized optimal con-

troller is sought however, akin to the mapping in Eq. (3.10) than Eq. (3.6). Problems

B and C attempt to find a generalized mapping.

N(θ) : ∀ x(t0),xdes(tf ) ∈ [xlb,xub]→ u∗(t) ∀ t ∈ [t0, tf ] (3.10)

This generalization property represents a real strength of neural networks, whereas in

traditional optimization the control variables are solved for directly, neural networks

provide a level of abstraction to produce more generalized controllers. This is also

why Problems A1-A3 have more network inputs than seemingly necessary, and in the

continuous control case, could have been optimized using time as the sole input, as

is commonly the case in direct single-shooting methods.[22] However, by incorporat-

ing the additional inputs from the start, the transition to the generalized controller

construct did not require any significant modifications to the existing network struc-

tures, and to a certain extent, provided some initial insight into the requisite network

hyperparameters.

For Problem B, an impulsive controller in an open-loop configuration is imple-

mented and applied to an intercept scenario. As in Problem A2, the network inputs

are the initial state vector and similar to Problem A3, the network outputs are a

3-by-1 ∆V control vector. Unlike the intercept scenario of Problem A1 however, an

operating range is defined as any starting position along a specified NMC, that is

for all β0 ∈ [0, 2π], as depicted by the dashed line in Figure 15. In the ML and RL

community this is referred to as the environment.[27] The goal here then is to produce
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Figure 14. Problem B Network

a single neurocontroller capable of generating the optimal impulsive burn regardless

of starting position within the defined operating range.

Figure 15. Problem B Operating Range and Training Set

Two approaches to solve this problem are explored, each dependent on sampling a

subset, or training set (depicted notionally by the outer dots in Figure 15), of the full

operating range: (a) at every iteration of the optimization, simulate the controller

on all samples, or (b) at each iteration, simulate a smaller sample subset, or batch,

of the total training set. Approach (a) is amenable to gradient-based optimization,
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but does not scale well as the size of the training set or complexity of the problem

increases. Problems B and C remained within the scope of this approach however, and

combinations of both approaches were explored. In current ML/RL research however,

approach (b), and variations thereof, is most commonly taken. Fundamentally, at each

iteration (also called episode) of the optimizer, a batch of samples from the training

distribution is randomly selected, then simulated using the candidate controller, and

finally the cost function taken to be some statistic of the batch (e.g., mean, max,

etc.). Over the course of the entire optimization, or training process, a representative

portion of the entire distribution will have been sampled.

Algorithm 3 Evolutionary Network Optimization with Batching

1: def environment, E . objective, constraints, dynamics, etc.
2: def agent, G . network topology, activation functions, etc.
3: procedure optimize
4: init population of G
5: while stop criteria not met do
6: for each candidate G do . in parallel
7: for each sample do
8: randomly sample S(t0) and E distributions . batch
9: while scenario not done do

10: A ← G(S) . determine action
11: S ′ ← E(S,A) . propagate, get new state
12: t = t+ ∆t

return constraints and mean cost
13: evolve population

return best G
14: validate

The stochastic nature of this approach can pose challenges to some gradient-based

optimizers. Typically RL problems are formulated to avoid explicit constraints, but

for this paper terminal constraints are included. Heuristic methods are chosen, specif-

ically a genetic algorithm, to accommodate both the cost and nonlinear constraint

functions directly. Algorithm 3 and Figure 16 outline the general framework. Ran-

dom permutations are used for batch selection to avoid duplicate samples within the
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Figure 16. Evolutionary Network Optimization Framework

same iteration/generation. Selecting the right number of samples depends on the size

and variance of the training set, as well as the complexity of the problem itself, and

is an active area of current research.[27] For this work, these values are determined

by trial and error.

With the addition of terminal constraints, it was found that tightening the toler-

ances over multiple iterations avoids premature divergence of the optimizer. In other

words, the optimizer is first allowed to find a feasible solution in the neighborhood of

the optimal solution, and then gradually increase the terminal accuracy and optimal-

ity of that solution. This is accomplished with a variation of the logistics function

according to

εi = εd(1 + 10e−γi) (3.11)

where εi is the tolerance at iteration i, εd is the desired final tolerance, and γ is a

user-defined growth rate. The logistics function was chosen through trial and error

as a common and convient method for tightening the tolerance. After convergence,

an additional optimization pass is made using all samples and finally validated on a

larger sampling within the training set bounds to validate generalization performance

and to verify smoothness such that no undesirable nonlinearities exist.
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An additional benefit of neural networks may be observed in this open-loop con-

trol implementation by leveraging the vector, in fact matrix, property of neural

networks.[27] The optimal control for a range of β0 values may be calculated di-

rectly and efficiently in one evaluation of the network. Within Problem B, this may

be accomplished by passing to the network a 6-by-N matrix of initial states corre-

sponding to the desired 1-by-N β0 vector. The network output is then the 3-by-N

∆V matrix corresponding to each initial state. Alternatively, if an open-loop contin-

uous controller is implemented with time as input, the entire control history may be

similarly calculated by passing the desired time vector. The matrix aspect of neural

networks is one property contributing to their popularity; as the size and complexity

of the problem increases this benefit becomes more pronounced, with hardware dedi-

cated to matrix calculations further improving efficiency. Unfortunately this can only

be accomplished for open-loop configurations, as closed-loop controllers exhibit a re-

cursive dependency on states not known a priori, i.e., network output u(ti) depends

on network input x(ti) that itself must first be propagated using u(ti−1), where ti is

the ith time step.

3.4 Problem C: Bounded Uncertainty

Similar to the previous problem, a generalized controller is sought, and in this

case one that performs optimally despite some uncertainty in the state dynamics. An

uncertain relative perturbation term, α, is introduced in the in-track direction, see

Eq. (3.12), and assumed to be constant with known bounds, [0.1, 1]. Once again, an

impulsive controller is implemented for an intercept scenario but due to the uncer-

tainty, the controller uses a closed-loop configuration.

ÿ = −2nẋ− α · 10−8 (3.12)
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Equation 3.13 shows the desired mapping.

N(θ) : x(t0),xdes(tf )→ u∗(t) ∀ α ∈ [0.1, 1] (3.13)

The bounds on α were selected such that a neurocontroller trained on an environment

with α = 0 results in a terminal position error of approximately 1 DU and 10 DU

for actual α values of 0.1 and 1 respectively. Therefore, the chosen values for α are

significant enough to impact the dynamics and should not be neglected by the con-

troller. The network took as an input the 6-by-1 current state vector and parameter

estimate α̂, and output a 3-by-1 ∆V vector as well as an updated α̂, depicted in Fig-

ure 17. Following the batched approach (Algorithm 3) in Problem B, a training set

of 50 linearly spaced α values is generated within the specified bounds. The number

of samples at each iteration was 5. The initial parameter guess, α̂0, was set in the

middle of the distribution at 0.5. The tolerance growth factor γ in Eq. (3.11) is set

to 1.

ΔVx 

ΔVz 

ΔVy 

α

x(t)

z(t)

y(t)

z(t)

x(t)

y(t)

α

Figure 17. Problem C Network
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The trajectory was divided into 3 fixed-length coast phases. At the end of coast

1, allowing the network time to estimate the uncertainty, the network is passed the

current state vector x(tcoast,1) and α̂0, and outputs a new α̂. The output ∆V is ignored

on this pass. The network is then passed the updated α̂ and same x(tcoast,1), and the

output ∆V is executed and α̂ updated. The second coast phase is propagated using

the closed-form solution, then α̂ and x(tcoast,2) are passed to the network, the output

∆V is executed and the final coast phase propagated. Note that the value of α̂ does

not necessarily correspond to the actual α value as this is not enforced during the

optimization, but is nonetheless correlated. A variation of this setup could enforce

α̂ = α as a constraint within the optimization, or split the parameter estimation

out to a second network, thereby creating a dual-network controller similar to the

structure of traditional estimator-regulator controllers.[54]

The following chapter details the implementation of Problems A, B, and C for

specific sets of values, and for each, presents the results alongside a benchmark optimal

solution.
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IV. Implementation and Analysis

This chapter presents the specific implementation of each of the five problems

within this research for a given set of parameter values. The results are then presented

and discussed with a comparison to benchmark solutions.

4.1 Problem A

4.1.1 Problem A1: Intercept.

For all problems, the initial spacecraft state is specified using ROE’s. For the first

problem, the following initial values are used

Table 7. Problem A1 Initial ROE’s

ae xd yd β zmax ψ

100 0 0 45◦ 50 270◦

resulting in an initial state vector

x =

r
v

 =



x

y

z

ẋ

ẏ

ż


≈



−35

71

−50

0.003

0.005

0


DU, DU/s

with a fixed final time of tf = 1/4 orbit. The origin is specified at an altitude of

35 786 km.

To prevent network saturation, the network inputs are scaled to approximately or-

der one: position values by 1 · 10−2 and velocity values by 100. The network outputs,
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in this case the control values, are scaled by 1 · 10−7 such that the network output

values are on the order one. The terminal position constraint is implemented as a

nonlinear inequality constraint,

‖r(tf )− rdes(tf )‖22 ≤ ε2r (4.1)

where rdes = 0 for this example, i.e. the origin, and εr is the user-specified tolerance,

for this example 1 · 10−3 DU. The cost function uses a trapezoidal approximation of

the control integral and is scaled appropriately.

In-Track, DU
Radial, DU

Figure 18. Problem A1 Trajectory

The desired level of performance is obtained with only 4 hidden nodes, resulting

in 36 weights and 7 biases for a total of 43 parameters. The final parameter values are

summarized in Figure 19, with the size of each node corresponding to its relative bias,

the opacity of the connections corresponding to the relative weights, and positive and

negative values represented by green and red respectively. Within this research these
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plots are primarily used to determine the appropriate network output scale factor.

In this limited case however, some additional insights may be gleaned by comparing

Figure 19 to the control history in Figure 20. The relative magnitude and sign of the

output nodes, i.e. the bias values, roughly correspond to the magnitude and sign of

the corresponding control components. As well, the connections leading to the output

node corresponding to the z control component are relatively transparent indicating

those weights are near zero. This matches the control plot that shows the z component

is nearly always zero. From these observations it is hypothesized that the output layer

biases are the primary driving factors of the control while weights and biases to the

left in this diagram serve to fine tune the control. Additionally, a significant pathway

is observed from the ẏ input node to the ax output node, suggesting there may be a

strong relation between these two components in this problem. The author is hesitant

to draw any definitive conclusions however from observations of these network plots.

More research is required to extract any consistently meaningful patterns beyond this

limited context.

Figure 19. Problem A1 Network Weights/Biases
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An optimal benchmark solution was found using GPOPS-II (a commonly used

and mature MATLAB-based pseudospectral optimization tool). The resulting tra-

jectories are depicted in Figures 18-21, with the GPOPS-II solution indicated by the

dashed lines. The neurocontroller results compare favorably to the optimal refer-

ence. As integration within the optimization is carried out using a fairly coarse

Figure 20. Problem A1 Control History

(a) (b)

Figure 21. Problem A1 State History

time step for computational performance, it is necessary to verify the results of the

neurocontroller at a finer time step due the potentially highly nonlinear nature of the

network function. From this verification step, the control is observed to be smooth

and without any unexpected nonlinearities.
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4.1.2 Problem A2: Rendezvous.

For Problem A2 the following initial values are used

Table 8. Problem A2 Initial ROE’s

ae xd yd β zmax ψ

100 0 0 0 0 0

resulting in an initial state vector

x ≈
[
−50 0 0 0 0.007 0

]T
DU, DU/s (4.2)

with a fixed final time of tf = 1/4 orbit and the origin specified at an altitude of

35 786 km.

The network inputs are scaled by the same values as in Problem A1, 1 · 10−2

and 100 for position and velocity respectively. The thrust magnitude is fixed at

1 · 10−6 DU/s2, therefore the network is only solving for the thrust direction and

duration of the two finite burns. No scaling is applied to the network outputs. The

burn durations are determined by mapping the corresponding network output, Ntb,i ,

to the range [0, 1] using the sigmoid function and multiplying by the maximum burn

duration, tb,max, i.e.,

tb,i = tb,max · sigmoid(Ntb,i), tb,max =
tf
2

(4.3)

This can be readily generalized to n burns by making tb,max =
tf
n

. In this manner, the

entire trajectory time may be used for thrust, but each burn is nonetheless limited

by these maximum uniform segments. The coast time is simply the remaining time,

tf −
∑
tb. Similarly, the thrust directions are determined by taking the unit vector

of the 3 corresponding network outputs, Nai
, and scaling by the thrust magnitude,
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T , i.e.,

ai = T
Nai

‖Nai
‖

(4.4)

As in Problem A1, the terminal constraints are implemented as nonlinear inequality

constraints, such that

‖r(tf )− rdes(tf )‖22 ≤ ε2r

‖v(tf )− vdes(tf )‖22 ≤ ε2v

(4.5)

where once again the desired final state in this example is the origin with zero ve-

locity. The tolerance εr remains at 1 · 10−3 DU while εv is introduced with a value

of 1 · 10−6 DU/s. The velocity constraints are scaled by 1 · 10−3 to ensure both con-

straints are of approximately equivalent magnitudes. Unlike Problem A1, the fixed

thrust magnitude allows the cost function to be easily calculated from the burn du-

rations, such that

J =
n∑
i=1

tb,i (4.6)

The open-loop configuration in this problem obviates the need to perform any finer

time step validation, outside of any desired numerical precision, on the neurocontroller

results as was accomplished in Problem A1.

As in Problem A1, acceptable performance is obtained with only four hidden

nodes, albeit the additional outputs increase the total number of parameters to 68,

summarized in Figure 22. The neurocontroller is compared to an optimal benchmark

solution found using a direct static optimization formulation with fmincon where the

design variables are explicitly burn durations and direction vectors. Both results

are illustrated in Figures 23-24. The two state histories match favorably with some

discrepancy towards the end due to the second burn differences. While the direction

and duration of the first burn is nearly identical between the two methods, for the
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Figure 22. Problem A2 Network Weights/Biases

(a) Trajectory (b) Control

Figure 23. Problem A2 Trajectory and Control

second burn the neurocontroller burned for a shorter duration at a higher magnitude

compared to the benchmark. The resulting total control are approximately equal, the

discrepancy in the latter burn suggesting a non-unique solution exists.
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(a) (b)

Figure 24. Problem A2 State History

4.1.3 Problem A3: NMC Transfer.

For Problem A3 the following initial and desired final values are used:

Table 9. Problem A3 ROE’s

ae xd yd β zmax ψ

Initial 100 0 0 90◦ 0 0

Desired 200 0 0 free 0 0

with a fixed final time of tf = 1/2 orbit. The origin is specified at an altitude of

622 km. These values are chosen to match Lovell’s analytical development in [17].

Unlike Problems A1 and A2, the network inputs for this problem are the ROE’s,

therefore all position values are scaled by 2 · 10−2, both angles by 1
2π

, and network

outputs by 1 · 10−3. The terminal position constraint is separated into two nonlinear

inequality constraints, one for the position terms

‖r(tf )− rdes(tf )‖22 ≤ ε2r (4.7)
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Figure 25. Problem A3 Trajectory

where in this context r comprises the ROE’s ae, xd, yd, and zmax, and one constraint

for the angle

‖ψ(tf )−W (ψdes(tf ))‖22 ≤ ε2ψ (4.8)

where W (·) simply wraps its argument to the range [0, 2π]. Both tolerances are set

to 1 · 10−3. The state vector at the final time, x(tf ), is transformed to ROE’s using

Eq. (2.5). In this case, the final β is allowed to be free, i.e., the spacecraft can enter

the desired final NMC anywhere along the ellipse. The cost function is the total ∆V ,

n∑
i=1

‖∆Vi‖22 (4.9)

As the minimum control for this scenario requires only radial burns, it is found that

with 4 hidden nodes as in the previous two problems, non-zero in-track and cross-track

burn components are output by the network, resulting in a slightly higher overall ∆V

than optimal. By increasing the number of hidden nodes to 12, the in-track and

cross-track components are driven to zero, producing the optimal total ∆V found in

[17]. Note that although the final β value is allowed to be free in this formulation,
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the final β specified in [17] represents the minimum control solution, therefore, the

same trajectory is arrived at regardless. Overall, this network comprises 160 total

parameters, summarized in Figure 26. Both the neurocontroller and results found in

Figure 26. Problem A3 Network Weights/Biases

[17] are depicted in Figures 25 and 27. Note the ẋ component discrepancy observed

in Fig. 27b is simply an artifact of the difference in time steps between the two

trajectories.

(a) (b)

Figure 27. Problem A3 State History
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4.2 Problem B: Bounded Initial Conditions

For Problem B, the following initial values are used:

Table 10. Problem B Initial ROE’s

ae xd yd β zmax ψ

100 0 0 [0, 2π] 0 0

with a fixed final time of tf = 1/4 orbit. The origin is specified at an altitude of

35 786 km.

(a) Trajectories from training set initial
states

(b) Trajectories from initial states outside
training set

Figure 28. Validation of generalized performance beyond 16 β0 values

Since β0 is the only varying input in this problem, initially a network was devel-

oped with β0 as the only input. With only one input, the total number of network

parameters is reduced thereby improving computational efficiency. However, it was

found that an equivalent network (i.e., same number of hidden nodes) with the full

6-by-1 initial state vector as the input performed better with regards to optimality,

accuracy, and convergence. Thus the network inputs are scaled as in Problems A1

and A2, 1 · 10−2 and 100 for position and velocity respectively. The network output

is scaled by 1 · 10−3.
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Initially the same terminal position constraint as in Problem A1, Eq. (4.1) was

used. This constraint, however, results in premature divergence in the ga. When run

for a single β0 value, convergence is attained. This suggests the stochastic nature of

the batching presents a challenge to the optimizer. To overcome this challenge, the

method outlined in Eq. (3.11) is implemented whereby the constraint is gradually

tightened over multiple generations of the ga. The constraint becomes

‖r(tf )− rdes(tf )‖22 ≤
( εr

1 + 10e−γi

)2
(4.10)

For this case, a γ value of 0.1 is found to be acceptable with εr = 1 · 10−3 DU. This

results in a constraint vector equal in length to the number of samples, s, in the

batch. The cost function is the mean square ∆V ,

J =
1

s

s∑
i=1

‖∆Vi‖22 (4.11)

The training set comprises 16 linearly spaced values of β0 in the defined range [0, 2π].

The batch size is gradually incremented from 4 to 8 and finally the full 16. These

values are tuned by hand to achieve convergence at minimum computation time. The

final pass is made with the full training set using fmincon at the specified tolerance

to ensure a local minimum is reached from the seeded ga solution. In this case, only

four hidden nodes (43 total parameters) are required to achieve the performance illus-

trated. Figure 28a depicts the trajectories for 16 initial β0 values in the training set,

matching the optimal trajectories. Figure 28b depicts 16 additional trajectories for

initial β0 values outside the training set and validates the controller’s ability to gener-

alize optimally beyond the 16 trained samples. As well, the blue-red double trajectory

at perigee shows the network suitably handles β0 = 0 ≡ 2π. Figure 30 shows the NC

results for a further 64 initial β0 values compared to an optimal benchmark solution.
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Figure 29. Problem B Network Weights/Biases

The benchmark was found by solving 64 individual static optimization problems with

fmincon, corresponding to the 64 β0 values. The filled circles represent the 16 point

training set. The NC performance favorably matches the optimal control costs albeit

with a slightly higher terminal position error, the latter of which may be improved

with a deeper network.

Unexpectedly, the controller also performs well for some initial states other than

those on the specified NMC, as shown in Figure 31. For initial states on NMC’s

with smaller ae values, the controller exhibits minimal terminal position error with

marginally higher ∆V compared to optimal, however, performance drops off precipi-

tously outside the initial NMC. This dichotomy may be due in part to the rudimentary

network input normalization method employed. Since all position values are scaled

by the largest position value of the initial NMC, this likely causes the larger position

values outside this NMC to saturate the network nodes. Preliminary investigation

suggests performance scales to some extent with the size of this initial NMC (see

Figure 32), but further research is required. Improved generalized performance could

also be derived from more sophisticated input normalization techniques. The geom-
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(a) NC

(b) Optimal Control

Figure 30. Comparison of NC and Benchmark Optimal Controller
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(a) Terminal Position Error, DU (b) Total Control, DU/s

Figure 31. Generalization Performance: ae ∈ [50, 150]
Dashed Line is ae = 100 Training Set

etry of these plots may also inform the selection of a more efficient training set. The

larger terminal position errors observed on the diagonal in Figure 31 suggest a higher

concentration of training samples in these regions, instead of the linear spacing used,

may improve efficiency and performance. Additionally, as identified in [52], the sym-

metry of the problem should be leveraged to decrease the training set size. Applying

these techniques may reduce computation requirements while retaining equivalent

controller performance, and vice versa.

(a) Terminal Position Error, DU (b) Total Control, DU/s

Figure 32. Generalization Performance: ae ∈ [50, 250]
Dashed Line is ae = 200 Training Set

4.3 Problem C: Bounded Uncertainty

For Problem C, the following initial values are used:
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Table 11. Problem C Initial ROE’s

ae xd yd β zmax ψ

100 0 0 0 0 0

with a fixed final time of tf = 1/4 orbit. The origin is specified at an altitude of

35 786 km.

As in Problems A1 and A2, the position and velocity network inputs are scaled

by 1 · 10−2 and 100 respectively, with the uncertain α̂ input scaled by the inverse of

the initial guess, α̂0. The control outputs are scaled by 1 · 10−2 and the output, α̂,

by α̂0. The initial guess is set to the middle of the α range at 0.5. The burn times

are fixed at 1
10

and 4
10

of tf .

The training set comprises 20 log-spaced values in the α range [0.1, 1], with the

number of samples in each batch, s = 5. For this problem, a logarithmic training set

was found to converge faster and with greater consistency across the operating range

than a linearly spaced set. The same terminal nonlinear inequality constraint as in

Problem B, Eq. (4.10), is implemented with γ = 1 and εr = 1 · 10−3 DU. The cost

function is the mean square of the total ∆V per sample, i.e.,

J =
1

s

s∑
i=1

n∑
j=1

‖∆Vj,i‖22 (4.12)

where s is the number of samples in each batch, and n is the number of burns.

As in Problem B, Figure 33 compares the NC results for several α values to an

optimal benchmark solution. The benchmark was found by solving 50 individual

static optimization problems using fmincon with 50 known α values. The total ∆V

matches favorably with the benchmark optimal values, exhibiting acceptable, albeit

higher terminal position error. The NC was simulated on 100 additional α values

within the defined bounds to verify the neurocontroller’s ability to generalize outside
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(a) NC (b) Optimal Control Sweep

Figure 33. Problem C Generalization and Performance Comparison

the training set with smooth results and no undesirable nonlinearities. Outside the

bounds [0.1, 1], position error increases as expected. Note that for this initial and

final position, the perturbation actually assists the controller, hence the decrease in

control with increasing α.
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V. Conclusions and Recommendations

5.1 Review

In this research, neurocontrollers are developed for proximal spacecraft maneuvers.

Three different thrust models are implemented: impulsive, finite, and continuous, in

both open- and closed-loop control configurations. The controllers are applied to three

common RPO maneuvers: intercept, rendezvous, and NMC transfers. The neurocon-

trollers are optimized numerically using both gradient-descent and genetic algorithms.

The research combines aspects of traditional optimal control direct shooting methods

with advances made in reinforcement learning. The methodology is implemented on

three primary problems: Problem A applies the framework to the optimal control

for three different sub-problems, while Problems B and C expand on these results by

introducing a level of robustness. This research successfully demonstrates the initial

application of neural networks as controllers to a variety of relative spacecraft ma-

neuver problems; a few key insights are highlighted in the proceeding section, with a

summary of future work discussed in § 5.3.

5.2 Insights

The universal approximation property of neural networks make them a flexible

parameterization of optimal control problems. This is illustrated by the diversity of

network inputs and outputs used throughout this research, from initial state vectors,

to ROE’s, ∆V , burn duration, and parameter estimates. Although not presented

in this research, as discussed in § 4.3, one or more networks can be employed to

approximate any number of desired mappings for a specific problem. Neural networks

can be implemented in both open- and closed-loop configurations depending on the
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requirements of the problem and application. Significantly, this parameterization

enables the generalized robustness demonstrated in Problems B and C.

For the problems solved in this research, surprisingly relatively small neural net-

works are required to achieve acceptable performance. All of the networks used

required only one hidden layer and with the exception of Problem A3, only four

hidden nodes. Although additional layers and nodes were explored, no benefit was

observed, and the computational performance suffered due to the increase in design

variables. As discussed in § 3.1.2, this parameterization does not lend itself to good

initial guesses. Fortunately, performance and convergence stability were not observed

to be overly sensitive to the initial guess. As well, despite their status as the de facto

activation function for neural networks in current ML research, rectified linear units

were not found to converge as well for these problems, compared to the hyperbolic

tangent activations used.

The results in Problem B, specifically the unexpected performance outside the

training range depicted in Figures 31 and 32, suggest a more efficient method exists

to select training samples. Observing the higher terminal position error on the diago-

nal outside the training set, increasing the concentration of samples on this diagonal

may result in more efficient optimization while retaining the same performance. Ref-

erence [52] leverages the symmetry of the problem to reduce the size of the required

training set, and consequently the required computation time. A similar approach

could be taken here. Alternatively, these results also suggest that more sophisticated

input normalization techniques are warranted.

Ultimately, autonomy in the RPO domain requires robust and optimal controllers.

Although applied to limited operating ranges, Problems B and C in particular demon-

strate the potential of this methodology to develop neurocontrollers that fulfill this

65



need. These operating ranges will of course need to be expanded and the networks

correspondingly scaled to achieve the desired level of autonomy.

5.3 Future Research

5.3.1 Higher Fidelity Dynamics.

While the HCW equations of motion provide a convenient, computationally ef-

ficient model of relative satellite motion, they exhibit limited practical application.

The optimization of neural networks is an inherently expensive computation due to

the sheer quantity of parameters at play, and therefore HCW is a reasonable starting

point but future work should examine more accurate, higher-order models like the

ones identified in § 2.2.1 to include perturbed eccentric orbits and two-body motion.

The direct shooting method employed in this research is amenable to most any dy-

namics model since no approximation of differential equations is made as in other OC

techniques like collocation. The downside of course is the increased computation ex-

pense of such higher accuracy models. This may be alleviated in part by first solving

the problem with more efficient, lower-accuracy dynamics and seeding the optimized

network to be solved again using less efficient, but higher-accuracy dynamics. Addi-

tionally, the size of the requisite network may provide a metric for quantifying the

complexity of the different dynamics models.

5.3.2 Larger, More Complex Training Sets.

For the problems solved in this research, neural networks are certainly not the

best tool for the job, Problem A especially illustrates this; analytic solutions exist

and other powerful optimal control techniques like pseuodspectral methods are far

more efficient and accurate. Although Problems B and C demonstrate the poten-

tial of neural networks for autonomous spacecraft controllers, the specified operating
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ranges used significantly limit their utility. Undoubtedly larger, more complex op-

erating ranges are required that will demand correspondingly larger, more complex

networks. This will of course come at the cost of computation and problem tractabil-

ity. Path constraints in particular often present a challenge to even the best numerical

optimization tools. This research will need to be combined with advances being made

in the field elsewhere in order to overcome such hurdles.

5.3.3 Comparison to Supervised Learning.

In [52] and [43], a supervised learning approach was taken to the problem of opti-

mal spacecraft control trajectories. With SL, prior to optimizing the neural network,

a large dataset must first be created, in the case of [43] over 300,000 trajectories. To

generate these data sets, thousands of optimal control problems must first be solved

typically using one of the methods outlined in § 2.3.2, e.g. collocation. While [43]

employed a clever continuation technique to reduce the computation time, whereby

nearby results are seeded to the optimizer for the next data point, this dataset gener-

ation step is potentially computationally prohibitive or intractable using traditional

OC methods. However, once the dataset is created, the neural network can be op-

timized much more efficiently than with RL techniques, as in this research, using

the increasingly robust and mature software tools built for the purpose of SL. This

distinction is likely to become more pronounced as the complexity of the problem

increases. Further research should examine the computational trade-off between the

two approaches when applied to the same OC problem. It may be found that this

trade-off is problem specific as well.
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5.3.4 Multi-Player Differential Games.

Some of the initial inspiration for this research came from the headline-grabbing

advances made by Google’s DeepMind team with games like Go and later StarCraft.[35,

55] In particular, the goal is to apply the concepts and frameworks developed in

this research to games of incomplete, asymmetric information for spacecraft in close

proximity. This research should seek to develop and analyze the application of ML

methods to the domain of optimal relative spacecraft control, building on the work

of Stupik, Jagat, Cavalieri, Satak and Hurtado in differential game theory.[56–60]

5.4 Conclusion

This research successfully combines methods from reinforcement learning and tra-

ditional optimal control theory to develop spacecraft neurocontrollers. Both open-

and closed-loop neurocontrollers are developed for three different thrust models to

produce fuel-optimal trajectories for a variety of common spacecraft proximity ma-

neuvers. Neural networks offer a flexible and powerful parameterization for complex

optimal control problems in this domain. Undoubtedly wider and deeper networks will

be needed as the designated operating ranges and difficulty of the specified problem

scenarios increase. Future research should continue to expand the problem set, com-

bining the robust qualities of bounded uncertainty and initial conditions as demon-

strated separately in Problems B and C. Additionally, further network input and

output representations should be explored to incorporate arbitrary targeting thereby

expanding the valid operating range for a given controller. The computational perfor-

mance trade-off of the two machine learning methods, supervised and reinforcement,

should be assessed. The results shown in Problem B offer some insight into a more

computationally efficient training set selection. The problems solved in the current
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research demonstrate the feasibility of using neural networks to create both optimal

and robust controllers and present a path towards more autonomous spacecraft.
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